CS 4530: Fundamentals of Software Engineering
Lesson 4.3: REST Protocols

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

e By the end of this lesson you should be able to:
* Explain the basic principles of RESTful protocols

* Examine a protocol and suggest ways in which it either
adheres to or violates the REST principles.

Your app relies on other apps for
services

» Authentication (Login with Google/Apple/Facebook)
* Sending/receiving email (SendGrid, MailGun, MailChimp)
* Telephony, text messaging, video chat (Twilio)

What we'd like

* A magic abstraction: remote procedure call (RPC)

Caller Machine Callee Machine
User Code User Code
local local
call ~ |call

-workl
local local
lreturn < return

Obstacles to magic RPC

* transmission delays (latency)

 can the client do something useful in the
meantime?

e asynchrony
* "mask latency with multiprocessing" = complexity

e client/server mismatch
* different languages,
* different data representations
* - wire-transmission formats
* - more complexity

A Solution(?): use the web!

* Implement your protocol via http.

* Of course, then you have to define your protocol XML/RPC or SOAP
. . . or REST or ...
* You'll want to define it in some standard e

metalanguage, so client and server can agree on its Tcp
meaning. Network layer

* But that means the client-human and server- Link layer
human have to agree on a standard metalanguage

* Lots of choices: XML/RPC, SOAP, WSDL, or ...

Aagh!

——
b Interoperability
Issues

b Business Process Specifications

b Management Specifications

P Messaging Specifications

B Presentation
Specifications

P Reliability
Specifications

P Transaction
Specifications

P Resource
Specifications

H[f

Services Standards Overview

Dependencies

Messaging Sped fieati ons i

==

Metadata Specifi ations

Searity Specilications

7
5
H
8.

Hﬁ

Resouree Specification

Il

Wanag ement Specifications

inno Q|

[rpee—— s Seht bl
1 G bk 1

L g W
Pram 03100 7K1 e+ 41 200011
-

Now take a deep breath, and start again...

A Typical HTTP Request

GET /docs/index.html HTTP/1.1

Host: www.nowherel23.com

Accept: image/gif, image/jpeg, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

* This request probably started out as
http://www.nowherel23.com/docs/index.html

« www.nowherel23.com identifies the host (the server's location)

* the rest of the request is the path, here /docs/index.html
* this might be a path in the server's file system,
* OR it could be anything at all—

* it's entirely up to the server to interpret the path

http://www.nowhere123.com/

That means the client can ask the server to
do things other than retrieve files

e Just has to be an agreement (a protocol) between

client and server about how these tasks are to be
described.

* Need a general framework to help us design such
protocols.

* We will talk about one such philosophy, called REST

10

REST: Representational State Transfer

* Defined by Roy Fielding in his 2000 Ph.D. dissertation

* “Throughout the HTTP standardization process, | was
called on to defend the design choices of the Web. That
is an extremely difficult thing to do... | had comments
from well over 500 developers, many of whom were
distinguished engineers with decades of experience.
That process honed my model down to a core set of
principles, properties, and constraints that are now
called REST.”

* Not just a transport protocol, not a protocol definition
language: a design philosophy

* Interfaces that follow REST principles are called RESTful

http://www.ics.uci.edu/%7Efielding/pubs/dissertation/fielding_dissertation.pdf

REST Principles

* Single Server
* Client calls server, server responds. That's it.

e Separation of concerns: client doesn't worry about data, server
doesn't worry about Ul

e Server may pass request on to other machines, but that's not visible
to the client

e Stateless
* No session state in the server

* Each client request must contain all the information the server
needs to process the request

e Uniform Cacheability
* requests must classify themselves as cacheable or not.

 Uniform Interface
e associate URIs with resources

12

Single Server

e Server is abstracted as a single box
 Client calls the server, server doesn’t call the client

* Enables separation of concerns:

* Client doesn’t worry about how the server does its
business

* Server doesn't worry about Ul

0]
H—

Client

Client sees only a single server

 Enables flexible design:
different servers can have
different responsibilities, but
client sees just a single server

Stateless

* Each client request contains all
information necessary to service
the request

* The client doesn't have to write a
sequence of requests to get their
work done.

* So requests can be farmed out to
different servers

#

Client

Request 1
Server

Load
Balancer

Request 3

Server

15

Uniform cacheability

e Requests and responses are clearly classified as
cacheable or not

* Enables use of generic caches that don’t know

anything about the structure of what they cache -
just what can be cached

3rd party cache
This involves more
systems stuff than we

Request 1
Server
will normally get involved

with, so you don't have to Server
worry about this

immediately. -
Server

Uniform Interface

* URIs should hierarchically identify nouns describing
resources that exist

e Actions that can be taken with resources are
specified by the HTTP methods (verbs)

* more on this later

Nouns are represented as URIs

* |n a RESTful system, the server is visualized as a store of
resources (nouns), each of which has some data

associated with it. We prefer plural vouns for

* URIs represent these resources toplevel resources, as ou
see here.
* Examples:
* /cities/losangeles Useful hearistic: if you
 /transcripts/00345/graduate (student 00345 has were keeping this data in
several transcripts in the system; this is the graduate one) a bunch of files, what
. : . would the directory
Anti-exa mp les: structure look like?
« /getCity/losangeles But ou don't have +o
 /getCitybyID/50654 actually keep the data in

e /Cities.php?id=50654 that way.

18

Verbs are represented as http methods

* In REST, there are four things you can do with a
resource

* POST: requests the server to create a resource

* there are several ways in which the value for the new
resource can be transmitted (more In a minute)

* GET: requests the server to respond with a
representation of the resource

* PUT: requests the server to replace the value of the
resource by the given value

 DELETE: requests the server to delete the resource

19

You say you want parameters?

There are at least 3 ways to associate parameters with a request:

* path parameters. These specify portions of the path to the resource. For
example, your REST protocol might allow a path like

/transcripts/00345/graduate

* query parameters. These are part of the URI and are typically used as
search items. For example, your REST protocol might allow a path like

/transcripts/graduate?lastname=covey&firstname=avery

* body parameters. You can put additional parameters or information in
the body, using any coding that you like.

20

Example interface #1: a todo-list
manager

* Resource: /todos
* GET /todos - get list all of my todo items
e POST /todos - create a new todo item (data in body)

e Resource: /todos/:todoltemID
 :todoltemlID is a path parameter
* GET /todos/:todoltemID - fetch a single item by id

e PUT /todos/:todoltemID - update a single item (new
data in body)

* DELETE /todos/:todoltemID - delete a single item

Example Interface #2: a database of

t FraAnNsC r| pts Remember the heuristic:
if you were keeping this
-- adds a new student to the database, what would the directory
-- returns an ID for this student. structure look like?

-- requires a body parameter 'name', url-encoded (eg name=avery)

-- Multiple students may have the same name.
GET /transcripts/:ID

-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID

-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber

-- adds an entry in this student's transcript with given name and course.

-- Requires a body parameter 'grade', url-encoded

-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber

-- returns the student's grade in the specified course.

-- Fails if student or course is missing.
GET /studentids?name=string Didn'+ seem +o fit

-- returns list of IDs for student with the given name the model, sorry ®

22

Review: Learning Objectives for this Lesson

* You should now be able to:
e Explain the basic principles of RESTful protocols

* Examine a protocol and suggest ways in which it either
adheres to or violates the REST principles.

23

	CS 4530: Fundamentals of Software Engineering�Lesson 4.3: REST Protocols
	Learning Objectives for this Lesson
	Your app relies on other apps for services
	What we'd like
	Obstacles to magic RPC
	A Solution(?): use the web!	
	Aagh!
	Now take a deep breath, and start again...
	A Typical HTTP Request
	That means the client can ask the server to do things other than retrieve files
	REST: Representational State Transfer
	REST Principles
	Single Server
	Client sees only a single server
	Stateless
	Uniform cacheability
	Uniform Interface
	Nouns are represented as URIs
	Verbs are represented as http methods
	You say you want parameters?
	Example interface #1: a todo-list manager
	Example Interface #2: a database of transcripts
	Review: Learning Objectives for this Lesson

